Vista elenco

Ricevuto prima di ieri

Il debutto di Astri-1 nell’extragalattico

16 Gennaio 2026 ore 19:18

Il telescopio Astri-1 ha catturato il suo primo segnale gamma di origine extragalattica. Nella notte del 15 gennaio 2026, tra le 01:00 e le 03:40 ora italiane, il telescopio Cherenkov – uno dei nove che costituiscono il mini-array Astri, la struttura osservativa dedicata all’astronomia gamma da Terra situata a Tenerife, nelle Isole Canarie – ha puntato gli occhi verso il blazar Markarian 421, registrando un incremento del flusso di raggi gamma proveniente dalla sorgente.

Illustrazione artistica che mostra Astri-1 in primo piano un blazar sullo sfondo. Crediti: Inaf/Silvia Crestan

Markarian 421 è una delle sorgenti più luminose del cielo nella banda dei raggi gamma. È anche una delle più vicine, motivo per cui è una fra le più studiate dalla comunità scientifica che si occupa di astrofisica delle alte e altissime energie. Situata nella costellazione dell’Orsa Maggiore a circa 400 milioni di anni luce dalla Terra, fa parte di una sottoclasse di nuclei galattici attivi che gli addetti ai lavori chiamano blazar: galassie che ospitano al centro un buco nero supermassiccio che alimenta potenti getti relativistici orientati lungo la nostra linea di vista. Questa particolare configurazione rende le sorgenti estremamente luminose e variabili alle alte e altissime energie, trasformandole in laboratori naturali per lo studio dei processi fisici più estremi dell’universo.

Il segnale rivelato da Astri-1 è associato all’emissione di un flare – un’improvvisa e intensa emissione di energia – da parte del buco nero ed è coerente con l’elevato stato di attività della sorgente segnalato nelle stesse ore da altri osservatori per raggi gamma, tra cui Lhaaso (ATel #17535), Veritas (ATel #17594) e i due telescopi Cherenkov di piccola taglia dell’osservatorio Ondřejov (ATel #17597). Il flusso di raggi gamma rilevato è risultato pari a circa 2,3 volte quello della Nebulosa del Granchio, sorgente di riferimento del cielo gamma, che il telescopio ha già osservato in passato.

«Attivati da un ATel di Veritas, che indicava che Markarian 421 fosse in flare, Astri-1 ha iniziato una campagna osservativa la notte tra il 14 e il 15 gennaio», racconta a Media Inaf  Fabio Pintore, ricercatore all’Inaf Iasf di Palermo e componente del gruppo che si è occupato dell’analisi preliminare dei dati. «I tre osservatori al sito – Silvia Crestan, Camilla Quartiroli e Alan Sunny – hanno profuso un grande impegno per consentire di accumulare fino a due ore e mezza di dati della sorgente in condizioni di visibilità ottimali. Dati che, con grande efficienza del sistema di processamento e archiviazione, sono stati trasferiti nel data center di Roma alla fine della notte osservativa».

«In questi casi», continua il ricercatore, «la velocità è cruciale e tutto il sistema Astri – dall’acquisizione fino all’analisi dei dati, ottimizzato grazie a un grande sforzo collettivo della comunità Astri – ha funzionato alla perfezione. I dati sono stati immediatamente presi in carico da Saverio Lombardi e dal gruppo che si occupa della riduzione dei dati e dell’analisi scientifica preliminare, che sul finire della mattinata aveva già ottenuto primi risultati. Astri-1 ha confermato che la sorgente era ancora in flare. Il suo flusso, infatti, era più del doppio, in un range di energia di riferimento che abbiamo scelto essere compreso tra 0.8 e 5  TeV (dove TeV, teraelettronvolt, è l’unità d’energia tipica della luce gamma di altissima energia), di quello della Crab Nebula, una sorgente molto brillante nel cielo gamma. Questo risultato mostra le eccellenti potenzialità sia dei singoli telescopi che dell’array Astri, prospettando un futuro ricco di soddisfazioni che ripaga dei tanti sforzi compiuti da tutti i gruppi di lavoro coinvolti nella progettazione hardware, software e nell’analisi dati».

L’analisi preliminare dei dati indica che il segnale è estremamente “solido” dal punto di vista scientifico: il livello di significatività statistica è infatti di 11 sigma, un valore che esclude che la rivelazione sia dovuta al caso o a rumori di fondo.

«Siamo felici che il telescopio Astri-1 abbia osservato la sua prima sorgente extragalattica», commenta Giovanni Pareschi, astrofisico dell’Inaf di Brera e principal investigator del progetto. «Si tratta di un risultato scientifico sicuramente di grande rilievo nel campo dell’astronomia gamma con telescopi Cherenkov, ottenuto da un gruppo per larga maggioranza italiano, con uno strumento interamente sviluppato da Inaf. Il singolo telescopio Astri-1, con cui è stata effettuata l’osservazione, ha una sensibilità di un fattore quasi tre superiore a quella di telescopi analoghi usati in passato, grazie al grande campo di vista e alla costante risoluzione angolare. Non vediamo l’ora di lavorare in stereoscopia con gli altri telescopi dell’Astri Mini- Array, cosa che avverrà già a partire dalla tarda primavera del 2026».

Per saperne di più:

 

Il passato abitabile di Marte rivelato dalle argille

15 Gennaio 2026 ore 13:23

Un nuovo studio dell’Istituto nazionale di astrofisica (Inaf) fornisce la mappa più dettagliata mai realizzata della distribuzione e della composizione delle argille sulla superficie di Marte, offrendo nuove chiavi di lettura sull’evoluzione geologica del pianeta, sul ruolo dell’acqua nel suo passato e sulla sua potenziale abitabilità.

Il lavoro, pubblicato sulla rivista Journal of Geophysical Research: Planets, si basa su quasi 1500 osservazioni condotte su scala globale e acquisite dallo spettrometro Crism (Compact Reconnaissance Imaging Spectrometer for Mars) a bordo del Mars Reconnaissance Orbiter della Nasa. Grazie a questa analisi è stato possibile estrarre e interpretare le firme spettrali nell’infrarosso delle argille presenti sulla superficie marziana.

Mappa globale di Marte che mostra la topografia, con le principali regioni del pianeta. La linea gialla delimita la grande dicotomia della crosta marziana, che segna la zona di transizione dagli antichi altopiani alle pianure più giovani. La linea rossa tratteggiata circonda l’area dominata dall’Olympus Mons e dal Tharsis Rise. Le stelle rosa e verdi indicano le posizioni dei lander e dei rover passati, presenti e futuri. I riquadri bianchi segnalano le aree ingrandite mostrate nelle Fig. 2–3. Crediti: J. Brossier/Inaf (Brossier et al. 2026)

Le argille marziane rappresentano una traccia diretta dell’acqua che un tempo ha modellato il quarto pianeta del Sistema solare e i luoghi in cui la vita avrebbe potuto svilupparsi. Alcune regioni del Pianeta rosso sono infatti considerate ambienti privilegiati per la possibile conservazione di biofirme; per questo motivo, la loro distribuzione e la composizione mineralogica costituiscono elementi chiave sia per la ricostruzione degli antichi ambienti acquosi di Marte sia per la selezione dei siti di atterraggio delle future missioni di esplorazione.

Mappa regionale dell’area circostante Mawrth Vallis e Oxia Planum, che evidenzia nuovi affioramenti ricchi di argille. Le aree evidenziate in rosso indicano osservazioni con una chiara presenza di argille ricche di ferro e magnesio, mentre quelle in rosa segnalano tracce più deboli o incerte. Crediti: J. Brossier/Inaf (Brossier et al. 2026)

«Abbiamo realizzato una mappa globale, messa a disposizione della comunità “marziana” internazionale, che mostra la distribuzione dei principali minerali idratati presenti su Marte, tra cui argille, solfati, cloriti e carbonati», spiega Jeremy Brossier, ricercatore dell’Inaf e primo autore dell’articolo. «Il nuovo studio fornisce inoltre una caratterizzazione dettagliata dei minerali argillosi, dalle fasi ricche di ferro (nontroniti) a quelle ricche di magnesio (saponiti), includendo anche composizioni intermedie come vermiculiti e ferrosaponiti. Questa ampia diversità mineralogica riflette una storia geochimica lunga e complessa del pianeta, legata a diverse condizioni di formazione e alterazione in presenza di acqua».

Per ottenere questi risultati, il team ha sviluppato nuovi metodi per ridurre il cosiddetto “rumore” nei dati spettrali, migliorando in modo significativo le capacità di identificare e distinguere le firme delle argille e di altri minerali. È stato inoltre implementato un approccio innovativo per estrarre dettagli dagli spettri, consentendo di separare con maggiore precisione i segnali associati alle argille ricche di ferro da quelle ricche di magnesio.

Mappe regionali delle aree Nili Fossae e Libya Montes, che mostrano nuovi affioramenti ricchi di argille recentemente analizzati. In questa regione si trova il cratere Jezero, attualmente esplorato dal rover Perseverance della Nasa, operativo su Marte dal 2021. Crediti: J. Brossier/Inaf (Brossier et al. 2026)

I risultati mostrano variazioni spaziali significative nella mineralogia argillosa di Marte: le nontroniti, ricche di ferro, dominano nella regione di Mawrth Vallis, mentre le saponiti, ricche di magnesio, sono concentrate soprattutto nelle aree di Nili Fossae e di Libya Monter. Oxia Planum, il sito di atterraggio del rover europeo Rosalind Franklin della missione ExoMars dell’Agenzia spaziale europea (Esa), ospita invece argille di composizione più intermedia, tra cui vermiculiti e ferrosaponiti. Queste caratteristiche rendono Oxia Planum un’area particolarmente promettente per lo studio degli antichi ambienti acquosi e per la ricerca di possibili biofirme.

Proprio per questo, «lo studio si inserisce direttamente nel contesto della missione ExoMars, che prevede l’esplorazione del suolo marziano a partire dal 2030. In questo scenario, l’Inaf svolge un ruolo di primo piano nello sviluppo dello strumento Ma_Miss (Mars Multispectral Imager for Subsurface Studies), uno spettrometro progettato per analizzare rocce e suoli del sottosuolo marziano e ricostruirne la storia geologica e ambientale», conclude il ricercatore.

Per saperne di più:

 

Così gestiscono le emissioni i buchi neri

14 Gennaio 2026 ore 17:47

La prima cosa da sapere sui buchi neri è che si chiamano così perché qualunque cosa – materia o luce – attraversi il loro orizzonte degli eventi non può più uscire. La seconda cosa è che non tutto ciò che viene attirato da un buco nero incorre in questo destino. Prima di attraversare il punto di non ritorno definitivo – l’orizzonte degli eventi, appunto –, nei buchi neri in accrescimento il materiale in arrivo forma un disco che ruota attorno al buco nero. Da questo disco di accrescimento, occasionalmente e in determinate circostanze, quantità di materiale sorprendentemente grandi vengono nuovamente espulse nello spazio. Avviene sotto forma di venti a raggi X, oppure di getti relativistici di plasma. E la congiunzione non è un caso: secondo un nuovo studio pubblicato su Nature Astronomy una modalità esclude l’altra.

Rappresentazione artistica di un sistema binario simile a 4U 1630−472. Un buco nero di massa stellare accresce materia dalla stella compagna, emettendo potenti getti di materia e gas oppure venti stellari visibili ai raggi X. Crediti: ESO/L. Calçada/M.Kornmesser

Si tratterebbe della prima chiara prova osservativa che questi due tipi di emissioni sono mutuamente esclusivi. Quando uno è attivo, l’altro scompare. Ma vediamoli meglio. I getti relativistici sono fasci di plasma stretti e concentrati che fuoriescono dai poli del buco nero a una velocità prossima a quella della luce, alimentati dai campi magnetici e dalla rotazione del buco nero. I venti di raggi X, invece, sono flussi più ampi e lenti di gas altamente ionizzato espulso dalla superficie del disco di accrescimento dalla radiazione e dalla pressione magnetica.

Nello studio, gli scienziati si sono concentrati su un sistema binario chiamato 4U 1630−472, formato da un buco nero con una massa circa dieci volte superiore a quella del Sole e da una stella compagna, dalla quale “ruba” materiale che riempie il suo disco di accrescimento e viene regolarmente espulso come vento o getto. Il sistema è stato monitorato per tre anni grazie alle osservazioni del telescopio a raggi X Nicer della Nasa, a bordo della Stazione Spaziale Internazionale, e del radiotelescopio MeerKat in Sudafrica. In questo periodo, il buco nero non ha mai prodotto contemporaneamente venti forti e getti potenti: quando il buco nero emette un getto di plasma ad alta velocità, il vento di raggi X si placa, e quando il vento riprende, il getto svanisce.

«In sistemi come 4U 1630-47, che accrescono materia a tassi compatibili con il regime standard di disco sottile, riteniamo che l’apparente mutua esclusività tra venti di disco e getti relativistici possa rappresentare un comportamento generale, piuttosto che una peculiarità di una singola sorgente», dice a Media Inaf Francesco Carotenuto, ricercatore postdoc all’Inaf di Roma e coautore dello studio. «I nostri risultati suggeriscono che le diverse modalità di espulsione del materiale non co-esistano simultaneamente, ma tendano piuttosto ad alternarsi nel tempo, in diverse fasi di attività (chiamate outbursts) del sistema. Al contrario di molti altri sistemi noti, 4U 1630-47 ha mostrato varie fasi di outburst negli ultimi anni, che abbiamo seguito nella loro evoluzione con dense campagne osservative nella banda radio e nei raggi X».

Non un caso isolato, dunque, questo buco nero, ma l’espressione di una “regola” generale. E c’è di più: mentre i due meccanismi si alternano, la quantità di materiale in arrivo rimane pressocché costante, un po’ come se il buco nero fosse in grado di autoregolarsi. Getti e vento, infatti, trasportano quantità comparabili di massa ed energia, suggerendo che, mentre la forma del flusso in uscita cambia, la velocità totale del flusso rimane invariata.

«Una possibile spiegazione fisica è che la forma dominante dell’outflow sia regolata da cambiamenti nella configurazione del campo magnetico associato al plasma del disco di accrescimento, in particolare nelle regioni più interne del disco e nella sua interazione con il buco nero», spiega Carotenuto. «I risultati di simulazioni numeriche suggeriscono infatti che differenti configurazioni del campo magnetico possano dare origine in modo naturale a meccanismi di “lancio” o “espulsione” diversi. Le transizioni tra queste configurazioni potrebbero quindi permettere alla sorgente di passare da uno stato dominato da venti a uno dominato da getti, senza richiedere cambiamenti drastici nel tasso globale di accrescimento».

In breve, i buchi neri non si limitano a consumare materia, ma la gestiscono, decidendo se espellerla nello spazio sotto forma di getto concentrato o spazzarla via con venti violenti. L’equilibrio tra venti e getti svolge un ruolo fondamentale nel regolare la crescita dei buchi neri, e influenza anche la formazione delle stelle nelle regioni vicine e l’evoluzione delle galassie. Questo meccanismo, infatti, potrebbe non riguardare solo i buchi neri di massa stellare come quello del sistema studiato, ma anche i buchi neri supermassicci al centro delle galassie. L’unica condizione irrinunciabile è che si tratti di un buco nero in accrescimento.

«Il disco di accrescimento è infatti un elemento fondamentale per la produzione sia dei venti sia dei getti, e senza un disco questi meccanismi non possono operare», specifica Carotenuto. «I sistemi binari a raggi X, in cui un buco nero di massa stellare (di circa 10 masse solari) accresce materia da una stella compagna, sono particolarmente importanti perché evolvono su scale temporali relativamente brevi (nell’ordine di settimane o mesi). Questo ci permette di osservare direttamente i cambiamenti nei meccanismi di espulsione del materiale nel corso del tempo. È possibile che comportamenti simili avvengano anche attorno a buchi neri supermassicci nei nuclei galattici attivi, ma in quel caso le transizioni avverrebbero su tempi molto più lunghi, rendendole molto più difficili da osservare direttamente».

Per saperne di più:

  • Leggi su Nature Astronomy l’articolo “Evidence of mutually exclusive outflow forms from a black hole X-ray binary“, di Zuobin Zhang, Jiachen Jiang, Francesco Carotenuto, Honghui Liu, Cosimo Bambi, Rob P. Fender, Andrew J. Young, Jakob van den Eijnden, Christopher S. Reynolds, Andrew C. Fabian, Julien N. Girard, Joey Neilsen, James F. Steiner, John A. Tomsick, Stéphane Corbel e Andrew K. Hughes

Il mondo dell’astronomia saluta Mario Rigutti

14 Gennaio 2026 ore 17:20

È scomparso lo scorso 12 gennaio 2026 a Firenze, all’età di 99 anni, Mario Rigutti, figura di riferimento dell’astrofisica italiana e protagonista del rinnovamento dell’Osservatorio astronomico di Capodimonte.

Mario Rigutti, 29 giugno 1979. Crediti: Inaf Capodimonte

Nato a Trieste nel 1926, Rigutti attraversò da giovanissimo gli anni difficili della guerra, mantenendo però intatta la passione per l’astronomia che lo avrebbe accompagnato per tutta la vita. Dopo gli studi tra Trieste e Firenze, si formò all’Osservatorio di Arcetri sotto la guida di Giorgio Abetti e Guglielmo Righini, distinguendosi per le sue ricerche sulla fotosfera solare e sulle bande molecolari del cianogeno. Negli anni Sessanta del secolo scorso, il suo percorso scientifico si aprì alla dimensione internazionale: prima al Dominion Observatory di Ottawa in Canada, poi all’Università di Berkeley in California dove entrò in contatto con alcuni dei protagonisti della fisica e dell’astrofisica solare del tempo. Fu protagonista di numerose spedizioni per l’osservazione di eclissi totali di Sole, contribuendo in modo decisivo alla conoscenza della corona solare. Fu in Canada (1963), in Grecia (1966), in Brasile (1966) e in Mauritania (1973). Da quest’ultima spedizione trasse ispirazione per il volume La scomaprsa del Sole (Gianinni 2014), un racconto di viaggio e di culture nuove e di scienza.

Nel 1969 approdò a Napoli come professore ordinario di astronomia all’Università Federico II e direttore degli osservatori di Capodimonte e di Teramo. A Napoli, la sua guida, durata fino al 1992, segnò una stagione di profonda trasformazione scientifica, culturale e infrastrutturale.

«A lui si deve una profonda trasformazione scientifica e infrastrutturale dell’istituto» commenta l’attuale direttore dell’Osservatorio di Capodimonte, Pietro Schipani «l’introduzione dell’indirizzo astrofisico all’Università di Napoli, la modernizzazione della strumentazione, la creazione del planetario didattico, dell’Auditorium e, nel 1991, del museo dell’Osservatorio. Anche gli attuali astronomi di Capodimonte devono qualcosa al prof. Rigutti».

Nella sua attività di ricerca, Mario Rigutti si è occupato degli strati esterni del Sole – fotosfera, cromosfera e corona – e dei fenomeni legati all’attività solare, come brillamenti e protuberanze. Tra il 1968 e il 1972 è stato membro della European Solar Research Organization e fino al 1973 chairman del Gruppo di lavoro per le eclissi totali di Sole dell’Unione astronomica internazionale. Autore di oltre 150 pubblicazioni scientifiche e instancabile divulgatore, Rigutti seppe parlare al grande pubblico con chiarezza e passione. Il suo libro Cento miliardi di stelle rimane un punto di riferimento per generazioni di lettori. Negli ultimi anni si dedicò anche alla narrativa e alla poesia, ottenendo numerosi riconoscimenti. Nel 2019 il Minor Planet Center gli ha dedicato il pianetino (33823) Mariorigutti, un tributo alla sua lunga vita spesa a osservare e raccontare l’universo.

Disegno a matita su carta dell’Osservatorio astronomico di Capodimonte (Napoli), eseguito da Mario Rigutti nel 1992. Crediti: Inaf Capodimonte

Accanto alla scienza, coltivava l’arte del disegno a matita e un profondo amore per la musica classica che considerava una forma di armonia affine a quella del cosmo. Socio di numerose società scientifiche, Rigutti è stato presidente dell’Accademia di scienze fisiche e matematiche di Napoli nel 1991 e della Società astronomica italiana dal 1977 al 1981. È stato inoltre tra i fondatori e direttore del Giornale di astronomia, contribuendo in modo decisivo alla crescita della cultura astronomica nel nostro Paese. La comunità astronomica italiana perde un protagonista appassionato e generoso, un uomo capace di unire rigore scientifico, visione culturale e un profondo impegno civile nella diffusione del sapere.

 

Misteriosa onda d’urto attorno a una nana bianca

12 Gennaio 2026 ore 11:50

Gas e polveri che fluiscono dalle stelle possono, nelle giuste condizioni, scontrarsi con l’ambiente circostante e creare un’onda d’urto. Un team di astronomi ha ora sfruttato il Vlt (Very Large Telescope) dell’Eso (Osservatorio europeo australe) per riprendere una splendida onda d’urto che circonda una stella morta. Ciò che hanno visto li ha lasciati perplessi: secondo tutti i meccanismi noti, la piccola stella morta Rxj 0528+2838 non dovrebbe avere attorno a sé una struttura di questo tipo. Questa scoperta, tanto enigmatica quanto sorprendente, mette alla prova la nostra comprensione di come le stelle morte interagiscono con l’ambiente circostante.

Immagine ottenuta dal Vlt della stella morta che crea un’onda d’urto mentre si muove nello spazio. Crediti: Eso/K. Iłkiewicz and S. Scaringi et al. Background: PanStarrs

«Abbiamo trovato qualcosa di mai visto prima e, cosa ancora più importante, del tutto inaspettato», dice Simone Scaringi, professore associato presso la Durham University (Regno Unito) e coautore principale dello studio – firmato tra gli altri anche dalle astronome dell’Istituto nazionale di astrofisica Domitilla de Martino e Sara Motta – pubblicato oggi su Nature Astronomy. «Le nostre osservazioni rivelano un potente efflusso che, secondo le nostre attuali conoscenze, non dovrebbe esserci», aggiunge Krystian Ilkiewicz, ricercatore post-dottorato presso il Centro astronomico Nicolaus Copernicus di Varsavia (Polonia) e co-responsabile dello studio. Efflusso (outflow in inglese) è il termine usato dagli astronomi per descrivere il materiale espulso dagli oggetti celesti.

La stella Rxj 0528+2838 si trova a 730 anni luce di distanza da noi e, come il Sole e altre stelle, ruota intorno al centro della nostra galassia. Durante questo moto, interagisce con il gas che permea lo spazio tra le stelle, creando un tipo di onda d’urto particolare (la cosiddetta onda di prua, o bow shock in inglese), «un arco curvo di materia, simile all’onda che si forma davanti a una nave», spiega Noel Castro Segura, ricercatore presso l’Università di Warwick (Regno Unito) e collaboratore di questo studio. Queste onde di prua sono create di solito dalla materia che fuoriesce dalla stella centrale, ma nel caso di Rxj 0528+2838 nessuno dei meccanismi noti può spiegare completamente le osservazioni.

Rxj 0528+2838 è una nana bianca, il nucleo residuo di una stella di piccola massa morente, e ha una compagna simile al Sole che le orbita intorno. In questi sistemi binari, la materia della stella compagna viene trasferita alla nana bianca, attraverso la formazione di un disco. Il disco alimenta la stella morta, ma parte della materia viene espulsa nello spazio, creando potenti efflussi. Ma Rxj 0528+2838 non mostra segni della presenza di un disco, rendendo un mistero l’origine dell£efflusso e della nebulosa che ne risulta intorno alla stella.

«Scoprire che un sistema apparentemente tranquillo e privo di disco potesse generare una nebulosa così spettacolare è stata una sorpresa, uno di quei rari momenti wow», assicura Scaringi.

Il gruppo di lavoro ha individuato per la prima volta una strana nebulosità intorno a Rxj 0528+2838 nelle immagini del telescopio Isaac Newton, in Spagna. Notandone la forma insolita, l’hanno osservata più in dettaglio con lo strumento Muse installato sul Vlt dell’Eso. «Le osservazioni con lo strumento Muse dell’Eso ci hanno permesso di mappare in dettaglio l’onda d’urto e di analizzarne la composizione. Questo è stato fondamentale per confermare che la struttura provenga effettivamente dal sistema binario e non da una nebulosa o una nube interstellare non correlata», spiega Ilkiewicz.

La forma e le dimensioni dell’onda d’urto implicano che la nana bianca stia emettendo un potente efflusso da almeno mille anni. Gli scienziati non sanno esattamente come una stella morta e senza disco possa alimentare un efflusso così duraturo, ma hanno un’ipotesi.

È noto che questa nana bianca ospita un forte campo magnetico, come confermato dai dati Muse. Il campo incanala il materiale sottratto alla stella compagna direttamente sulla nana bianca, senza formare il disco intorno ad essa. «La nostra scoperta mostra che, anche senza disco, questi sistemi possono generare potenti efflussi, rivelando un meccanismo che ancora non comprendiamo. Questa scoperta sfida l’idea corrente di come la materia si muove e interagisce in questi sistemi binari estremi», aggiunge Ilkiewicz.

I risultati suggeriscono una fonte di energia nascosta, probabilmente il forte campo magnetico, ma questo “motore misterioso”, come lo definisce Scaringi, deve ancora essere studiato. I dati mostrano che la forza dell’attuale campo magnetico è sufficiente solo per alimentare un’onda d’urto della durata di poche centinaia di anni, quindi spiega solo in parte ciò che gli astronomi stanno osservando.

Per comprendere meglio la natura di questi efflussi senza disco, è necessario studiare molti altri sistemi binari. Il futuro Extremely Large Telescope (Elt) dell’Eso aiuterà gli astronomi «a mappare un numero maggiore di questi sistemi, ma anche alcuni più deboli, in dettaglio e a rivelarne di simili, contribuendo in ultima analisi a comprendere la misteriosa fonte di energia che rimane oggi inspiegata», prevede Scaringi.

Fonte: press release Eso

Per saperne di più:

Guarda il video sul canale YouTube dell’Eso:

 

❌