Vista elenco

Ricevuto prima di ieri

Così gestiscono le emissioni i buchi neri

14 Gennaio 2026 ore 17:47

La prima cosa da sapere sui buchi neri è che si chiamano così perché qualunque cosa – materia o luce – attraversi il loro orizzonte degli eventi non può più uscire. La seconda cosa è che non tutto ciò che viene attirato da un buco nero incorre in questo destino. Prima di attraversare il punto di non ritorno definitivo – l’orizzonte degli eventi, appunto –, nei buchi neri in accrescimento il materiale in arrivo forma un disco che ruota attorno al buco nero. Da questo disco di accrescimento, occasionalmente e in determinate circostanze, quantità di materiale sorprendentemente grandi vengono nuovamente espulse nello spazio. Avviene sotto forma di venti a raggi X, oppure di getti relativistici di plasma. E la congiunzione non è un caso: secondo un nuovo studio pubblicato su Nature Astronomy una modalità esclude l’altra.

Rappresentazione artistica di un sistema binario simile a 4U 1630−472. Un buco nero di massa stellare accresce materia dalla stella compagna, emettendo potenti getti di materia e gas oppure venti stellari visibili ai raggi X. Crediti: ESO/L. Calçada/M.Kornmesser

Si tratterebbe della prima chiara prova osservativa che questi due tipi di emissioni sono mutuamente esclusivi. Quando uno è attivo, l’altro scompare. Ma vediamoli meglio. I getti relativistici sono fasci di plasma stretti e concentrati che fuoriescono dai poli del buco nero a una velocità prossima a quella della luce, alimentati dai campi magnetici e dalla rotazione del buco nero. I venti di raggi X, invece, sono flussi più ampi e lenti di gas altamente ionizzato espulso dalla superficie del disco di accrescimento dalla radiazione e dalla pressione magnetica.

Nello studio, gli scienziati si sono concentrati su un sistema binario chiamato 4U 1630−472, formato da un buco nero con una massa circa dieci volte superiore a quella del Sole e da una stella compagna, dalla quale “ruba” materiale che riempie il suo disco di accrescimento e viene regolarmente espulso come vento o getto. Il sistema è stato monitorato per tre anni grazie alle osservazioni del telescopio a raggi X Nicer della Nasa, a bordo della Stazione Spaziale Internazionale, e del radiotelescopio MeerKat in Sudafrica. In questo periodo, il buco nero non ha mai prodotto contemporaneamente venti forti e getti potenti: quando il buco nero emette un getto di plasma ad alta velocità, il vento di raggi X si placa, e quando il vento riprende, il getto svanisce.

«In sistemi come 4U 1630-47, che accrescono materia a tassi compatibili con il regime standard di disco sottile, riteniamo che l’apparente mutua esclusività tra venti di disco e getti relativistici possa rappresentare un comportamento generale, piuttosto che una peculiarità di una singola sorgente», dice a Media Inaf Francesco Carotenuto, ricercatore postdoc all’Inaf di Roma e coautore dello studio. «I nostri risultati suggeriscono che le diverse modalità di espulsione del materiale non co-esistano simultaneamente, ma tendano piuttosto ad alternarsi nel tempo, in diverse fasi di attività (chiamate outbursts) del sistema. Al contrario di molti altri sistemi noti, 4U 1630-47 ha mostrato varie fasi di outburst negli ultimi anni, che abbiamo seguito nella loro evoluzione con dense campagne osservative nella banda radio e nei raggi X».

Non un caso isolato, dunque, questo buco nero, ma l’espressione di una “regola” generale. E c’è di più: mentre i due meccanismi si alternano, la quantità di materiale in arrivo rimane pressocché costante, un po’ come se il buco nero fosse in grado di autoregolarsi. Getti e vento, infatti, trasportano quantità comparabili di massa ed energia, suggerendo che, mentre la forma del flusso in uscita cambia, la velocità totale del flusso rimane invariata.

«Una possibile spiegazione fisica è che la forma dominante dell’outflow sia regolata da cambiamenti nella configurazione del campo magnetico associato al plasma del disco di accrescimento, in particolare nelle regioni più interne del disco e nella sua interazione con il buco nero», spiega Carotenuto. «I risultati di simulazioni numeriche suggeriscono infatti che differenti configurazioni del campo magnetico possano dare origine in modo naturale a meccanismi di “lancio” o “espulsione” diversi. Le transizioni tra queste configurazioni potrebbero quindi permettere alla sorgente di passare da uno stato dominato da venti a uno dominato da getti, senza richiedere cambiamenti drastici nel tasso globale di accrescimento».

In breve, i buchi neri non si limitano a consumare materia, ma la gestiscono, decidendo se espellerla nello spazio sotto forma di getto concentrato o spazzarla via con venti violenti. L’equilibrio tra venti e getti svolge un ruolo fondamentale nel regolare la crescita dei buchi neri, e influenza anche la formazione delle stelle nelle regioni vicine e l’evoluzione delle galassie. Questo meccanismo, infatti, potrebbe non riguardare solo i buchi neri di massa stellare come quello del sistema studiato, ma anche i buchi neri supermassicci al centro delle galassie. L’unica condizione irrinunciabile è che si tratti di un buco nero in accrescimento.

«Il disco di accrescimento è infatti un elemento fondamentale per la produzione sia dei venti sia dei getti, e senza un disco questi meccanismi non possono operare», specifica Carotenuto. «I sistemi binari a raggi X, in cui un buco nero di massa stellare (di circa 10 masse solari) accresce materia da una stella compagna, sono particolarmente importanti perché evolvono su scale temporali relativamente brevi (nell’ordine di settimane o mesi). Questo ci permette di osservare direttamente i cambiamenti nei meccanismi di espulsione del materiale nel corso del tempo. È possibile che comportamenti simili avvengano anche attorno a buchi neri supermassicci nei nuclei galattici attivi, ma in quel caso le transizioni avverrebbero su tempi molto più lunghi, rendendole molto più difficili da osservare direttamente».

Per saperne di più:

  • Leggi su Nature Astronomy l’articolo “Evidence of mutually exclusive outflow forms from a black hole X-ray binary“, di Zuobin Zhang, Jiachen Jiang, Francesco Carotenuto, Honghui Liu, Cosimo Bambi, Rob P. Fender, Andrew J. Young, Jakob van den Eijnden, Christopher S. Reynolds, Andrew C. Fabian, Julien N. Girard, Joey Neilsen, James F. Steiner, John A. Tomsick, Stéphane Corbel e Andrew K. Hughes
❌